1,504 research outputs found

    Can a wormhole supported by only small amounts of exotic matter really be traversable?

    Full text link
    Recent studies have shown that (a) quantum effects may be sufficient to support a wormhole throat and (b) the total amount of "exotic matter" can be made arbitrarily small. Unfortunately, using only small amounts of exotic matter may result in a wormhole that flares out too slowly to be traversable in a reasonable length of time. Combined with the Ford-Roman constraints, the wormhole may also come close to having an event horizon at the throat. This paper examines a model that overcomes these difficulties, while satisfying the usual traversability conditions. This model also confirms that the total amount of exotic matter can indeed be made arbitrarily small.Comment: 8 pages, AMSTe

    Thin-shell wormholes: Linearization stability

    Full text link
    The class of spherically-symmetric thin-shell wormholes provides a particularly elegant collection of exemplars for the study of traversable Lorentzian wormholes. In the present paper we consider linearized (spherically symmetric) perturbations around some assumed static solution of the Einstein field equations. This permits us to relate stability issues to the (linearized) equation of state of the exotic matter which is located at the wormhole throat.Comment: 4 pages; ReV_TeX 3.0; one postscript figur

    Can a wormhole generate electromagnetic field?

    Full text link
    We have considered the possibility of a slowly rotating wormhole surrounded by a cloud of charged particles. Due to slow rotation of the wormhole, the charged particles are dragged thereby producing an electromagnetic field. We have determined the strength of this electromagnetic field and the corresponding flux of radiation.Comment: 9 pages, typos fixe

    The Effect of Negative-Energy Shells on the Schwarzschild Black Hole

    Get PDF
    We construct Penrose diagrams for Schwarzschild spacetimes joined by massless shells of matter, in the process correcting minor flaws in the similar diagrams drawn by Dray and 't Hooft, and confirming their result that such shells generate a horizon shift. We then consider shells with negative energy density, showing that the horizon shift in this case allows for travel between the heretofore causally separated exterior regions of the Schwarzschild geometry. These drawing techniques are then used to investigate the properties of successive shells, joining multiple Schwarzschild regions. Again, the presence of negative-energy shells leads to a causal connection between the exterior regions, even in (some) cases with two successive shells of equal but opposite total energy.Comment: 12 pages, 10 figure

    Exactly soluble model for self-gravitating D-particles with the wormhole

    Full text link
    We consider D-particles coupled to the CGHS dilaton gravity and obtain the exact wormhole geometry and trajectories of D-particles by introducing the exotic matter. The initial static wormhole background is not stable after infalling D-particles due to the classical backreaction of the geometry so that the additional exotic matter source should be introduced for the stability. Then, the traversable wormhole geometry naturally appears and the D-particles can travel through it safely. Finally, we discuss the dynamical evolution of the wormhole throat and the massless limit of D-particles.Comment: 16 pages, 3 figures, revte

    Static and dynamic traversable wormhole geometries satisfying the Ford-Roman constraints

    Full text link
    It was shown by Ford and Roman in 1996 that quantum field theory severely constrains wormhole geometries on a macroscopic scale. The first part of this paper discusses a wide class of wormhole solutions that meet these constraints. The type of shape function used is essentially generic. The constraints are then discussed in conjunction with various redshift functions. Violations of the weak energy condition and traversability criteria are also considered. The second part of the paper analyzes analogous time-dependent (dynamic) wormholes with the aid of differential forms. It is shown that a violation of the weak energy condition is not likely to be avoidable even temporarily.Comment: 16 pages AMSTe

    Spatially Averaged Quantum Inequalities Do Not Exist in Four-Dimensional Spacetime

    Get PDF
    We construct a particular class of quantum states for a massless, minimally coupled free scalar field which are of the form of a superposition of the vacuum and multi-mode two-particle states. These states can exhibit local negative energy densities. Furthermore, they can produce an arbitrarily large amount of negative energy in a given region of space at a fixed time. This class of states thus provides an explicit counterexample to the existence of a spatially averaged quantum inequality in four-dimensional spacetime.Comment: 13 pages, 1 figure, minor corrections and added comment

    Differentially Private Exponential Random Graphs

    Full text link
    We propose methods to release and analyze synthetic graphs in order to protect privacy of individual relationships captured by the social network. Proposed techniques aim at fitting and estimating a wide class of exponential random graph models (ERGMs) in a differentially private manner, and thus offer rigorous privacy guarantees. More specifically, we use the randomized response mechanism to release networks under ϵ\epsilon-edge differential privacy. To maintain utility for statistical inference, treating the original graph as missing, we propose a way to use likelihood based inference and Markov chain Monte Carlo (MCMC) techniques to fit ERGMs to the produced synthetic networks. We demonstrate the usefulness of the proposed techniques on a real data example.Comment: minor edit

    Polarization and Color Filtering Applied to Enhance Photogrammetric Measurements of Reflective Surfaces

    Get PDF
    Techniques for enhancing photogrammetric measurement of reflective surfaces by reducing noise were developed utilizing principles of light polarization. Signal selectivity with polarized light was also compared to signal selectivity using chromatic filters. Combining principles of linear cross polarization and color selectivity enhanced signal-to-noise ratios by as much as 800 fold. More typical improvements with combining polarization and color selectivity were about 100 fold. We review polarization-based techniques and present experimental results comparing the performance of traditional retroreflective targeting materials, cornercube targets returning depolarized light, and color selectivity

    Vacuum polarization of a scalar field in wormhole spacetimes

    Get PDF
    An analitical approximation of for a scalar field in a static spherically symmetric wormhole spacetime is obtained. The scalar field is assumed to be both massive and massless, with an arbitrary coupling ξ\xi to the scalar curvature, and in a zero temperature vacuum state.Comment: 10 pages, RevTeX, two eps figure
    corecore